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Given a compact interval 4, it is shown that for E. A. Rakhmanov’s weight w on
A which is bounded from below by the Chebyshev weight v on 4 (1982, Math.
USSR Sh. 42, 263) the corresponding orthonormal polynomials are unbounded in
every L7 (and L?) with p>2 and also that the Lagrange interpolation process
based on their zeros diverges in every L? with p>2 for some continuous f. This
yields an affirmative answer to Conjecture 2.9 in “Research Problems in
Orthogonal Polynomials” (1989, in “Approximation Theory, VI,” Vol. 2, p. 454;
(C. K. Chui, L. L. Schumaker, and J. D. Ward, Eds.), Academic Press, New York)
a positive answer to Problem 8, and a negative answer to Problem 10 of P. Turan
(1980, J. Approx. Theory 29, 32-33).  © 1997 Academic Press

Throughout this note, let 4 be a fixed compact interval of positive
length, say 4 =%"[a, b] with — o0 <a <b < o. The function w is called a
weight in 4 if w(=0)eL'(4) and |, w>0. Given a weight w in 4, let
{p.(w)} X, (deg(p,) =n) denote the system of orthonormal polynomials
with respect to w. Given neN and fe C(4), the Lagrange interpolating
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polynomial L,(w, f) based on the zeros of p,, is defined as the unique poly-
nomial of degree n— 1 that takes the values of f at the zeros of p,(w).
In what follows, we will use the notation

1/p N 1/p N
def def def
lgll, = {f Iglp} , lgll,, = {f Igl”u} . gl .. = max|g],
A A A

and

(&

def
1L, (W)l p = sup [L,(w, ).,
/o =1

where #>0 in 4 and 0 <p < co. The Chebyshev weight corresponding to
A4 is denoted by v, that is,

def 1
= , A=T[a,b].
wx) n/(b—x)x—a) e La.b]

For mean convergence of Lagrange interpolation the first two significant
results, one of them due to P. Erdés and P. Turan [2], and the other one
due to Erdés and E. Feldheim [1], are as follows.!

THEOREM A. Given a weight w in 4, lim,, _, . || f —L,(w, f)|,.>=0 holds
for all feC(4).

THEOREM B. If O0<p<oo then lim,_ . | f—L,(v, f)ll, ,=0 holds for
all feC(A).

In 1975, Turan restated two of his favorite problems in this direction in
[9, p. 32-33].

PrOBLEM 8. Are there a weight w in 4 and a function fe€ C(4) such
that we have limsup,, _, ., | f—L,(w, )., = oo for every p >2?

ProBLEM 10 (Erdés—Feldheim). Let w>wv in 4. Is it true that if p >0
and fe C(4) then lim,,, . |/ —L,(w, f)ll,=0?

Problem 8 was first solved in [3, Corollary 10.18, p. 181] and [4,
Theorem, p. 190], and then improved in [8, Corollary 14, p. 326] as
follows.

! Most of the subsequent problems, conjectures, and results were originally formulated for
the case when 4=[ —1, 1], but, of course, they are equivalent to the case when 4 is an
arbitrary compact interval.
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THEOREM C. Let 2< py<oo, and let w and u be weights in A. If
{4 [w/v]l P2 u=co holds for every p>p,, then there exists a function
feC(4) such that limsup,_ . |f—L,(w, f) =o0 holds for every
P> Do-

Unfortunately, this theorem gives answers neither to Problem 8 with the
additional condition w>v in 4 nor to Problem 10, since if w > v in 4 then
L (w/v)”’/zuéjdu< 0.

Closely related to these problems is a conjecture given in [ 5, Conjecture
2.9, p. 454] which is related to Steklov’s conjecture (see, for instance, [9,
Problems 68 and 69, p. 60] and [6, p. 549]). Since E. A. Rakhmanov dis-
proved the original conjecture of Steklov in [6, Theorem 2, p. 5661]), it is
natural to expect that its L? variant with all p > 2 fails as well. Hence we
have the following.

Hu,p

CONJECTURE 2.9. Given p>2, there exists a weight w in 4 such that
w=v in 4 and the sequence { p,(w)}~_, is unbounded in L”.

The purpose of this note is to give a positive answer to Problem 8 with
the additional condition w>v in 4 (Theorem 1), a negative answer to
Problem 10 (Theorem 1), and an affirmative answer to Conjecture 2.9
(Theorem 2).

THEOREM 1. There exists a weight w in A and a function f € C(A4) such
that w=v in A and

limsup | f—L,(w, )ll,.,=,  Vp>2. (1)
In particular,

lim sup Hf_Ln(W’ f)”w,p = 00, VP >2> (2)
and

limsup || f—L,(w, f)|,=, Vp>4. 3)

THEOREM 2. There exists a weight w in A such that w>=v in A and

lim sup | p,(w)],, ,= o0 (4)

n— oo

for every p>2.
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Note that Theorem 2 delivers more than what Conjecture 2.9 says since
{p.(w)} 7, turns out to be unbounded in L? not just in L”.

Theorem 3 gives a useful relationship between mean boundedness of
orthogonal polynomials and mean convergence of the corresponding
Lagrange interpolation process.

THEOREM 3. Let 0< p < oo, and let w and u be weights in A. Suppose
that lim,, , . || f—L,(w, f)|l,. ,=0 holds for all f € C(A). Then

sup n= 7" || p, ()|, < 0

neN
ifu=1in A, and

sup n” 7 || p(w)l.. < o0
neN

if uzv in A, respectively.

The proofs of these theorems are based on the following lemmas.

Lemma 1 [8, Theorem 12, p. 324]. Let 0 < p < oo, and let w and u be
weights in A. Then

sup 12200

< 0.
neN ”LH(M))H u, p

The following Nikol’skii-type inequalities are well known. They are a
special case of [3, Theorem 6.3.13, p. 113 ] where the case of more general
Jacobi weights is dealt with.

LEMMA 2. Let 0 < p<oo. Given neN, let Q be a polynomial of degree n.
Then there is a constant ¢ >0 depending on p only such that

1Ol <en®” |0y,  and 1O, <cn'" 0], (5)

The following two extensions of the uniform boundedness principle proved
to be quite useful when constructing universal examples for the divergence
of some approximation processes.

Lemma 3 [3, Theorem 10.19, p. 182]. Let 0 < p < oo, and let Ny = N with
card(N,) = co. Let w and u be weights in A. IflimnENO If—=L,(w, AH.,=0
Jor all f e C(4), then sup,, . L, (W), ,< .

LemmA 4 [4, Lemma, p. 191]. Let 0 <s, < 0. Let D be a Banach space
with norm ||-| and let {B‘Y}_YOQ<OC be a collection of Banach spaces B, with
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norms || - ||, such that B,< B, for s>t, and |b||,<|b||, if t <s and b € B;. Let
{L,:D—B._}, . be a sequence of bounded linear operators such that
lim,,, ., . sup ;<1 IL,(f) =00 for every so<s<oco. Then there exists
feD such that lim sup,,_, . |L,.(f)|,= oo for every s, <s< 0.

The following result was formulated by Rakhmanov in [ 7, p. 263 ] where
he points out that it can be proved in the same way that [ 7, Theorem 1,
p. 261] is deduced from [7, Theorem 2', p. 258].2

LEMMA 5. Let t be one of the endpoints of A, and let {5,}, . be a
sequence of positive numbers such that lim,, _, ., 6,=0. Then there exists a
weight w in A and N, =N with card(N,)= oo such that w>=v in A and
|pa(w, T)| =6,n"*(log n) ~*? for ne N,.

Proof of Theorem 3. By Lemma 3, we have sup,_y | L,(w)
Hence, by Lemmas 1 and 2 the theorem follows. ||

.. ,<oo0.

Proof of Theorem 2. Let w be chosen as in Lemma 5 with J,=
(I+logn)~" By (5), |p,(w)l.<en"”|p,w)|,, for neN. Hence, by
Lemma 3, formula (4) holds for every p>2. |

Proof of Theorem 1. By Theorem 2, there exists w such that w>v in 4
and (4) holds for every p > 2. By Lemma 1, lim sup,, , . [|L,(w)]|, ,= oo for
every p > 2. Hence, by Lemma 4, there is a function f'€ C(4) such that (1)
holds for every p>2. Formula (2) follows from (1). To prove (3), given
p >4, choose ¢ >0 such that p(1 —¢)>4. By Holder’s inequality

_ p(1—e)2 _ » (1—¢)2 o) (1+e)2
|f L,(w, f)| V< |f L,(w, f)| v -
4 p .

Note that 2/(14¢)<2 so that v¥"+9 e LY(4). Since p(1 —¢)/2>2, (3)
follows from (1). |
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